
zwischen der „interstitial"- und „intersticialcy"-An-
ordnung liegende Energieschwelle nicht berücksich-
tigt hat. 

Ferner erscheint es auf den ersten Blick überraschend, 
daß die Bildungsenergie von Gitterlücken in Cu größer 
als in Au ist, obwohl für die Bindungsenergie das Um-
gekehrte gilt. Die Zahlenwerte für die Bildungsenergie 
lassen sich mit Ililfe eines von F u m i 1 1 vorgeschlagenen 
Modells verstehen: Eine Gitterlücke wirkt als negative 
Ladung, die durch ein Ausweichen der Leitfähigkeits-

11 F. F u m i , 10. Solvay-Konferenz für Physik über 
„Les Electrons dans les m^taux", Brüssel 1954. 

elektronen abgeschirmt werden muß. Die dadurch be-
wirkte Erhöhimg der Energie des Elektronengases 
wird teilweise durch eine Entspannung des Elektro-
nengases infolge der Vergrößerung des Kristallvolumens 
bei Bildung einer Scliottky-Fehlstelle kompensiert. Vor-
läufige Rechnungen haben für den „elektronischen" 
Beitrag zur Fehlstellenenergie etwa 0,13£ (£ = Fermi-
Energie) ergeben. Zusammen mit der Änderung der 
Rumpf-Wechselwirkung in der Umgebung der Leer-
stelle (van der Waalssche Kräfte, Überlappungskräfte) 
kommt man ziemlich genau auf die in Tab. 2 angege-
benen Werte für die Bildungsenergie von Leerstellen 
in Cu und Au. 

Die Unmöglichkeit der Selbstlokalisation 
von Elektronen im störstellenfreien Kristallgitter 

Von H. H a k e n 
Institut für Theoretische Physik der Universität 

Erlangen 
(Z. Naturforschg. 10a, 253—254 [1955]; eingeg. am 3. März 1955) 

Daß Elektronen in Kristallen an verschiedenen Sor-
ten von Störstellen lokalisierte, stationäre Zustände 
einnehmen können, ist wohlbekannt. Bei der theoreti-
schen Behandlung des Verhaltens von Elektronen in 
einem störstellenfreien Kristall, dessen Atome als 
ruhend oder auch als schwingend gedacht werden, 
wurde verschiedentlich ebenfalls die Möglichkeit ins 
Auge gefaßt, daß Elektronen an irgendwelchen will-
kürlichen Gitterpunkten einen stationären Zustand 
einnehmen. Hier wurde einmal die Vorstellung ent-
wickelt, daß ein einzelnes Elektron in einem schwin-
gungsfähigen polaren Kristall (bzw. Kontinuum) das 
umgebende Medium polarisiert, wodurch ein Potential-
topf entsteht, in dem das Elektron gebunden wird1- -. 
Zum andern wurde in einer kürzlich erschienenen Ar-
beit von P l a s k e t t 3 bei der Untersuchung von Elek-
tronen mit Coulombscher Wechselwirkung in einem 
ruhenden Kristall (Kontinuum) die Anschauung ver-
treten, daß hier einige Elektronen lokalisierte, statio-
näre Zustände einnehmen können. 

Nachdem nun schon von W o n s s o w s k i 4 für das 
Mehrelektronenproblem mit Coulombscher Wechsel-
wirkung im ruhenden Gitter und vom Verfasser5 für 
ein Elektron im schwingenden Gitter6 bewiesen wor-
den ist, daß es hier keine lokalisierten, stationären 

1 L. D. L a n d a u , Sowj. Phys. 3, 004 [1933]; J. J. 
M a r k h a m u. F. S e i t z , Phys. Rev. 74, 1014 [1948]; 
N. F. M o t t u. R. W. G u r n e y , Electric Processes in 
Ionic Crystals, Oxford 1940; S. J. P e k a r , Uspechi 
Fiz. Nau'k 50, 197 [1953], deutsch in Fortschr. Phys. 1, 
367 [1954]. Hier eine Reihe weiterer Zitate. 

2 Nach P e k a r 1 kann dieses Gebilde: Elektron + Po-
tentialtopf („Polaron") unter dem Einfluß eines elek-
trischen Feldes verschoben werden. Der von P e k a r 1 

ferner entwickelte Begriff der „Polaronenwelle" wird 
von der im foigenden gegebenen Kritik nicht berührt. 

3 J. S. P l a s k e t t , Phil. Mag. 45, 1255 [1954]. 
4 S. W. W o n s s o w s k i , Uspechi Fiz. Nauk, S. 289 

Elektronenzustände gibt, soll in der vorliegenden Note 
dieser Beweis unter noch wesentlich allgemeineren Vor-
aussetzungen erbracht werden. Der Hamilton-Opera-
tor, den wir für n Elektronen ansetzen, darf abstands-, 
geschwTindigkeits- und spinabhängige Wechselwirkun-
gen zwischen den Elektronen enthalten. Ferner darf 
das gitterperiodische Potential durch harmonische 
Schwingungen verändert werden. Mit den Elektronen-
impulsen den Elektronenkoordinaten r4- und den 
Erzeugungs- und Vernichtungsoperatoren bx, bx für die 
Schallquanten der Gitterwellen mit den Ausbreitungs-
vektoren tüA lautet der Hamilton-Operator7: 

II (pif r,; bx* bx; bx eiw* \ bx* e~ii0- ri). (1) 

Der Hamilton-Operator bleibt unverändert bei einer 
simultanen Verschiebung der Elektronen um einen Git-
tervektor a: rf -> tj- + a und der gleichzeitigen Verschie-
bung des Schwingungszustandes um a: 

b x ^ b x e ~ i w ' a , bx* -+bx*e i w * a . (2) 
Wie wir früher7 zeigten, haben die exakten stationären 
Lösungen von (1) die Form 

= 2 6-*<»i n + .. + toy rN) 9f U ( v ) X i - X j ) o ( v ) ; 
(3) 

ft ist darin ein Weilenzahlvektor, SR die Schwerpunkts-
koordinate der Elektronen. Die Summation erstreckt 
sich über alle Schallquantenbesetzungszahlen 

{v) = vlf . . ., vN. 

TJ(V) ist in 9? gitterperiodisch und kann noch in beliebi-
ger Weise von den Relativkoordinaten der Elektronen 
abhängen. 0(,,) kennzeichnet den Schwingungszustand 

[1952], deutsch in Fortschr. Phys. 1, 239 [1954]. Hier 
auch Zitate früherer Arbeiten. 

5 H. H a k e n , „Zusatzbemerkungen" in W. S c h o t t -
k y , Halbleiterprobleme, Braunschweig 1954, S. 72, 
Fußnote 8. 

6 Eine Kritik am Polaronenbegriff in den P e k a r -
sehen Fassungen findet sich ferner bei II. F r ö h l i c h , 
Adv. Phvs. 3, 325 [1954] und G. H ö h l e r , Z. Natur-
forschg. 9a, 801 [1954]. 

7 Eine genauere Diskussion dieses Hamilton-Opera-
tors findet sich bei II. H a k e n , Z. Naturforschg. 9a, 
228 [1954]. 
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des Gitters, der mit v1 Schallquanten der Gitterwelle 1, 
mit v2 Schallquanten der Gitterwelle 2 usw. besetzt ist. 
Wir bilden nun den Ausdruck für die örtliche Aufent-
haltswahrscheinlichkeit des Elektrons 1. (Da wir von 
Symmetrie-Eigenschaften bei Teilchenvertauschungen 
keinen Gebrauch machen, können wir die Teilchen 
ruhig als unterscheidbar ansehen.) 

w (rx) = / . . . J<!F| ( t j , . . . , xn) V® ( r l t . . . , rn)> d r 2 . . . drn8 

= 27 2 7 ; - . - X e ^ i + •••)«Ufa u(v) 

( f ' ) ( v ) d r a . . . d r B <*<;,, 0 ( v ) > . 
Wegen < <P*ß) & (v ) > = ö ! h Vl • S„t „2 . . . ö, t y Vjf 

reduziert sich der Ausdruck für w ^ ) auf 

- 2 7 / — J J UU>) 0 ' " ' - | 2 d r 2 . . . d r n . (4) 

Wir zeigen nun, daß w (r,) gitterperiodisch ist, sich also 
das Elektron nicht an einem ausgezeichneten Gitter-
punkt in einem lokalisierten Zustand befinden kann. 
Dazu ersetzen wir in tv(x1) die Elektronenkoordinate rx 
durch r 1 + a (a: Gittervektor) und ändern gleichzeitig 
die Integrations variablen tj, i > 1 in tj + a ab (letztere 
Substitution läßt den Wert des Integrals natürlich 
unverändert): 

w (x1 + 0) = Z J • • • J I U(„) (91 + a, Xi - Xj) |2 dr2 . . . dr n . 

Da die U(u) in 91 gitterperiodisch sind, ist der letztere 
Ausdruck mit iv (r :) identisch, also tatsächlich 

w ( r x+ a) = w (tj) . (5) 
In vielen Arbeiten wird der Hamilton-Operator spe-

ziell so angesetzt, daß er schon gegenüber einer Sub-

8 Bei Berücksichtigung des Spins ist noch über die 
Spinkoordinaten zu summieren. 

9 H. F r ö h l i c h , Proc. Roy. Soc. A 223, 296 [1954]. 
10 F. B l o c h , Z. Phys. 52, 555 [1928]. 
11 Ob diese Funktionsmannigfaltigkeit dann schon 

eine hinreichend gute Lösung darstellt, bedarf natür-

stitution (2) mit infinitesimalem a invariant ist. Dann 
ist die örtliche Aufenthaltswahrscheinlichkeit kon-
stant (6). Die Eigenschaft (5) bzw. (6) muß notwendig 
jede Lösung aufweisen. Beispielsweise erfüllt der Lö-
sungsansatz, den F r ö h l i c h in seinem eindimensiona-
len Modell der Supraleitung9 verwendet, die in diesem 
Fall zutreffende Bedingung (6) jedoch nicht, so daß 
sein Ansatz noch nicht die Form der exakten Lösung 
(3) besitzt. 

Obgleich es, wie wir eben zeigten, keine lokalisierten 
stationären Zustände in einem Gitter mit Translations-
symmetrie gibt, so kann trotzdem ein Lösungsansatz, 
der ganz oder teilweise lokalisierte Elektronen- bzw. 
Schwingungszustände des Gitters benutzt, durchaus 
sehr nützlich sein. Durch einen solchen Ansatz lassen 
sich nämlich oft schon wesentliche Teile der in Frage 
stehenden Wechselwirkungen erfassen. Als Beispiele 
seien hier nur die B l o c h sehe10 BehandlungdesEinelek-
tronenproblems im ruhenden Gitter (Verwendung von 
Atomfunktionen) und die Pekarsche 1 Behandlung 
des Einelektronenproblems im schwingenden polaren 
Medium genannt. Man darf jedoch bei einem solchen 
Lösungsansatz nicht stehen bleiben, sondern hat dann 
aus allen Funktionen, die aus der ursprünglich be-
stimmten lokalisierten Funktion durch Deckoperatio-
nen des Gitters hervorgehen, Linearkombinationen 
aufzubauen, die speziell mit (3) verträglich sein müs-
sen11. Beispiele hierfür sind die eben erwähnte B l o c h -
sche10 Methode und die H ö h l e r sehe6 Behandlung des 
Polaronenproblems. 

Herrn Professor Dr. H. V o l z danke ich für inter-
essante Diskussionen. 

lieh stets noch einer besonderen Untersuchung. Auf 
jeden Fall sind zu der betrachteten Lösungsmannig-
faltigkeit noch solche Funktionen hinzuzunehmen, die 
mit den ursprünglichen energetisch entartet sind (und 
mit ihnen kombinieren). 

Das W-Ka-Interferenzbild des flüssigen Antimons 

Von II. H e n d u s und H. M ü l l e r 

Institut für Metallforschung, Saarbrücken 

(Z. Naturforschg. 10a, 254—255 [1955]; eingeg. am 24. Februar 1955) 

Röntgeninterferenzaufnahmen von flüssigem Anti-
mon können seines relativ hohen Dampfdruckes wegen 
nicht im Reflexions verfahren an der freien ebenen 
Schmelzoberfläche, sondern nur an einer abgeschlos-
senen Probe im Durchstrahl verfahren gemacht werden. 
Als Probenbehälter kommen z. B. geschlossene Kapil-
laren oder Küvetten aus Quarzglas in Betracht. Bei 
Aufnahmen mit einer der gebräuchlichen K a-Röntgen-
wellenlängen darf der Radius der Kapillare oder die 
Spaltbreite der Küvette wegen des starken Absorptions-
vermögens des Antimons wenige Hundertstel eines Milli-
meters nicht überschreiten. Zudem wird der Anteil der 
Quarzstreuung an der Gesamtstreuung bei der min-

destens erforderlichen Wanddicke der Kapillaren oder 
Küvetten nicht unerheblich. 

Diese Verhältnisse werden mit kürzer werdender 
Wellenlänge günstiger, weshalb ein Versuch mit Wolf-
ram-K a-Strahlung lohnend erschien. Wir verwenden 
für unsere Versuche die W-Ka-Strahlung einer Röhre 
mit Feinfokus von 0,2 mm Durchmesser (Bauart R . 
Seifert, Hamburg). Das an einer0,2 mm dicken ( lOl l ) -
Quarzplatte reflektierte K a^-Dublett fällt durch ein 
sorgfältig gebautes Blendensystem senkrecht auf die 
indirekt geheizte, abgeschmolzene Küvette aus Quarz-
glas mit Wandstärken von 0,25 mm und mit einer opti-
malen Schichtdicke des flüssigen Antimons von 0,2 mm. 
Die Abstände zwischen Brennfleck — Monochromator 
— Blende — Küvette sind so klein wie möglich gehal-
ten. Die nicht unerhebliche Streustrahlung erforderte 
eine sorgfältige Bleiabschirmung. 

Die Aufnahme von geschmolzenem Antimon bei 
645°C in Abb. 1 entstand unter folgenden Bedingun-
gen: 137 kV; 1,5 raA; 125 h; Gevaert-Structurix D 10-


